Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biomed Opt Express ; 15(3): 1815-1830, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495707

RESUMO

High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging. The phase contrast imaging provided improved visualization of retinal structures such as cone inner segments, vessel walls and red blood cells with images being acquired at frame rates up to 500 Hz. Blood flow velocities of small vessels (<40 µm in diameter) were measured using kymographs for capillaries and cross-correlation between subsequent images for arterioles or venules. Cardiac-related pulsatile patterns were observed with normal resting heart-beat rate, and instantaneous blood flow velocities from 0.7 to 20 mm/s were measured.

2.
Opt Lett ; 48(3): 791-794, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723590

RESUMO

A high-speed, adaptive optics partially confocal multi-spot ophthalmoscope (AO-pcMSO) using a digital micromirror device (DMD) in the illumination channel and a fast 2D CMOS camera is described. The camera is synchronized with the DMD allowing projection of multiple, simultaneous AO-corrected spots onto the human retina. Spatial filtering on each raw retinal image before reconstruction works as an array virtual pinholes. A frame acquisition rate of 250 fps is achieved by applying this parallel projection scheme. The contrast improves by 2-3 fold when compared to a standard flood illumination architecture. Partially confocal images of the human retina show cone and rod photoreceptors over a range of retinal eccentricities.

3.
Biomed Opt Express ; 14(1): 299-314, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36698677

RESUMO

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.

4.
Biomed Opt Express ; 14(12): 6422-6441, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420317

RESUMO

Glaucoma is a group of eye diseases characterized by the thinning of the retinal nerve fiber layer (RNFL), which is primarily caused by the progressive death of retinal ganglion cells (RGCs). Precise monitoring of these changes at a cellular resolution in living eyes is significant for glaucoma research. In this study, we aimed to assess the effectiveness of temporal speckle averaging optical coherence tomography (TSA-OCT) and dynamic OCT (dOCT) in examining the static and potential dynamic properties of RGCs and RNFL in living mouse eyes. We evaluated parameters such as RNFL thickness and possible dynamics, as well as compared the ganglion cell layer (GCL) soma density obtained from in vivo OCT, fluorescence scanning laser ophthalmoscopy (SLO), and ex vivo histology.

5.
Transl Vis Sci Technol ; 11(8): 11, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972433

RESUMO

Purpose: To perform in vivo evaluation of the structural morphology and vascular plexuses of the neurosensory retina and choroid across vertebrate species using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography (SS-OCTA) imaging. Methods: A custom-built SS-OCT system with an incorporated flexible imaging arm was used to acquire the three-dimensional (3D) retinal OCT and vascular OCTA data of five different vertebrates: a mouse (C57BL/6J), a rat (Long Evans), a gray short-tailed opossum (Monodelphis domestica), a white sturgeon (Acipenser transmontanus), and a great horned owl (Bubo virginianus). Results: In vivo structural morphology of the retina and choroid, as well as en face OCTA images of retinal and choroidal vasculature of all species were generated. The retinal morphology and vascular plexuses were similar between rat and mouse, whereas distinct choroidal and paired superficial vessels were observed in the opossum retina. The retinal and vascular structure of the sturgeon, as well as the pecten oculi and overlying the avascular and choroidal vasculature in the owl retina are reported in vivo. Conclusions: A high-quality two-dimensional and 3D in vivo visualization of the retinal structures and en face visualization of the retina and choroidal vascular plexus of vertebrates was possible. Our studies affirm that SS-OCT and SS-OCTA are viable methods for evaluating the in vivo retinal and choroidal structure across terrestrial, aquatic, and aerial vertebrates. Translational Relevance: In vivo characterization of retinal morphology and vasculature plexus of multiple species using SS-OCT and SS-OCTA imaging can increase the pool of species available as models of human retinal diseases.


Assuntos
Corioide , Tomografia de Coerência Óptica , Animais , Corioide/irrigação sanguínea , Corioide/diagnóstico por imagem , Angiofluoresceinografia/métodos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
6.
Mol Ther Nucleic Acids ; 28: 613-622, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35614998

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic disruption of vascular endothelial growth factor A (Vegfa) with a single gRNA suppresses choroidal neovascularization (CNV) in preclinical studies, offering the prospect of long-term anti-angiogenesis therapy for neovascular age-related macular degeneration (AMD). Genome editing using CRISPR-CRISPR-associated endonucleases (Cas9) with multiple guide RNAs (gRNAs) can enhance gene-ablation efficacy by augmenting insertion-deletion (indel) mutations with gene truncations but may also increase the risk of off-target effects. In this study, we compare the effectiveness of adeno-associated virus (AAV)-mediated CRISPR-Cas9 systems using single versus paired gRNAs to target two different loci in the Vegfa gene that are conserved in human, rhesus macaque, and mouse. Paired gRNAs increased Vegfa gene-ablation rates in human cells in vitro but did not enhance VEGF suppression in mouse eyes in vivo. Genome editing using paired gRNAs also showed a similar degree of CNV suppression compared with single-gRNA systems. Unbiased genome-wide analysis using genome-wide unbiased identification of double-stranded breaks (DSBs) enabled by sequencing (GUIDE-seq) revealed weak off-target activity arising from the second gRNA. These findings suggest that in vivo CRISPR-Cas9 genome editing using two gRNAs may increase gene ablation but also the potential risk of off-target mutations, while the functional benefit of targeting an additional locus in the Vegfa gene as treatment for neovascular retinal conditions is unclear.

7.
Light Sci Appl ; 11(1): 63, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304441

RESUMO

The visualization and assessment of retinal microvasculature are important in the study, diagnosis, monitoring, and guidance of treatment of ocular and systemic diseases. With the introduction of optical coherence tomography angiography (OCTA), it has become possible to visualize the retinal microvasculature volumetrically and without a contrast agent. Many lab-based and commercial clinical instruments, imaging protocols and data analysis methods and metrics, have been applied, often inconsistently, resulting in a confusing picture that represents a major barrier to progress in applying OCTA to reduce the burden of disease. Open data and software sharing, and cross-comparison and pooling of data from different studies are rare. These inabilities have impeded building the large databases of annotated OCTA images of healthy and diseased retinas that are necessary to study and define characteristics of specific conditions. This paper addresses the steps needed to standardize OCTA imaging of the human retina to address these limitations. Through review of the OCTA literature, we identify issues and inconsistencies and propose minimum standards for imaging protocols, data analysis methods, metrics, reporting of findings, and clinical practice and, where this is not possible, we identify areas that require further investigation. We hope that this paper will encourage the unification of imaging protocols in OCTA, promote transparency in the process of data collection, analysis, and reporting, and facilitate increasing the impact of OCTA on retinal healthcare delivery and life science investigations.

8.
J Biophotonics ; 15(3): e202100252, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34817116

RESUMO

Optoretinogram, a technique in which optical coherence tomography (OCT) is used to measure retinal functions in response to a visible light stimulus, can be a potentially useful tool to quantify retinal health alterations. Existing experimental studies on animals have focused on measuring the global retinal response by transversally averaging 3D data across the retina, which minimizes the spatial resolution of the signals, and limits the signal-to-noise ratio because only central B-scans are collected and analyzed. These problems were addressed in this study by collecting volumetric data to probe functional signals and developing an improved 3D registration approach to align such series-acquired OCT volumes. These data were then divided into small blocks and subject to a spatiotemporal analysis, whose results confirmed the spatial-dependence of functional signals. By further averaging, the overall measurement accuracies for the position and the scattering signals were estimated to be approximately 30 nm and 1.1 %, respectively. With improved accuracy, this method revealed certain novel functional signals that have not been previously reported. In conclusion, this work provides a powerful tool to monitor retinal local and global functional changes in aging, diseased, or treated rodent eyes.


Assuntos
Análise de Dados , Retina , Animais , Retina/diagnóstico por imagem , Retina/fisiologia , Tomografia de Coerência Óptica/métodos
9.
Opt Express ; 29(20): 32179-32195, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615295

RESUMO

Full-field swept-source optical coherence tomography (FF-SS-OCT) is an emerging technology with potential applications in ophthalmic imaging, microscopy, metrology, and other domains. Here we demonstrate a novel method of multiplexing FF-SS-OCT signals using carrier modulation (CM). The principle of CM could be used to inspect various properties of the scattered light, e.g. its spectrum, polarization, Doppler shift, or distribution in the pupil. The last of these will be explored in this work, where CM was used to acquire images passing through two different optical pupils. The two pupils contained semicircular optical windows with perpendicular orientations, with each window permitting measurement of scattering anisotropy in one dimension by inducing an optical delay between the images formed by the two halves of the pupil. Together, the two forms of multiplexing permit measurement of differential scattering anisotropy in the x and y dimensions simultaneously. To demonstrate the feasibility of this technique our carrier multiplexed directional FF-OCT (CM-D-FF-OCT) system was used to acquire images of a microlens array, human hair, onion skin and in vivo human retina. The results of these studies are presented and briefly discussed in the context of future development and application of this technique.


Assuntos
Luz , Espalhamento de Radiação , Tomografia de Coerência Óptica/métodos , Anisotropia , Artefatos , Estudos de Viabilidade , Análise de Fourier , Cabelo/diagnóstico por imagem , Humanos , Interferometria , Cebolas , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/fisiologia , Semicondutores , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/tendências
10.
Biomed Opt Express ; 12(7): 4340-4362, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457418

RESUMO

A new method based on polarization-sensitive optical coherence tomography (PS-OCT) is introduced to determine the polarization properties of human retinal vessel walls, in vivo. Measurements were obtained near the optic nerve head of three healthy human subjects. The double pass phase retardation per unit depth (DPPR/UD), which is proportional to the birefringence, is higher in artery walls, presumably because of the presence of muscle tissue. Measurements in surrounding retinal nerve fiber layer tissue yielded lower DPPR/UD values, suggesting that the retinal vessel wall tissue near the optic nerve is not covered by retinal nerve fiber layer tissue (0.43°/µm vs. 0.77°/µm, respectively). Measurements were obtained from multiple artery-vein pairs, to quantify the different polarization properties. Measurements were taken along a section of the vessel wall, with changes in DPPR/UD up to 15%, while the vessel wall thickness remained relatively constant. A stationary scan pattern was applied to determine the influence of involuntary eye motion on the measurement, which was significant. Measurements were also analyzed by two examiners, with high inter-observer agreement. The measurement repeatability was determined with measurements that were acquired during multiple visits. An improvement in accuracy can be achieved with an ultra-broad-bandwidth PS-OCT system since it will provide more data points in-depth, which reduces the influence of discretization and helps to facilitate better fitting of the birefringence data.

11.
Sci Rep ; 11(1): 16252, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376700

RESUMO

Melanosomes, lipofuscin, and melanolipofuscin are the three principal types of pigmented granules found in retinal pigment epithelium (RPE) cells. Changes in the density of melanosomes and lipofuscin in RPE cells are considered hallmarks of various retinal diseases, including Stargardt disease and age-related macular degeneration (AMD). Herein, we report the potential of an in vivo multimodal imaging technique based on directional back-scattering and short-wavelength fundus autofluorescence (SW-FAF) to study disease-related changes in the density of melanosomes and lipofuscin granules in RPE cells. Changes in the concentration of these granules in Abca4-/- mice (a model of Stargardt disease) relative to age-matched wild-type (WT) controls were investigated. Directional optical coherence tomography (dOCT) was used to assess melanosome density in vivo, whereas the autofluorescence (AF) images and emission spectra acquired with a spectrometer-integrated scanning laser ophthalmoscope (SLO) were used to characterize lipofuscin and melanolipofuscin granules in the same RPE region. Subcellular-resolution ex vivo imaging using confocal fluorescence microscopy and electron microscopy was performed on the same tissue region to visualize and quantify melanosomes, lipofuscin, and melanolipofuscin granules. Comparisons between in vivo and ex vivo results confirmed an increased concentration of lipofuscin granules and decreased concentration of melanosomes in the RPE of Abca4-/- mice, and provided an explanation for the differences in fluorescence and directionality of RPE scattering observed in vivo between the two mouse strains.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Melaninas/metabolismo , Melanossomas/patologia , Imagem Multimodal/métodos , Epitélio Pigmentado da Retina/patologia , Doença de Stargardt/patologia , Animais , Camundongos , Camundongos Knockout , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/metabolismo , Doença de Stargardt/diagnóstico por imagem
12.
Comput Methods Programs Biomed ; 201: 105949, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33567382

RESUMO

BACKGROUND AND OBJECTIVE: Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature. METHODS: The proposed methodology consists of three stages, pre-processing, main processing, and post-processing. The first stage consists of applying filters for image smoothing. The main processing stage is divided into two configurations, the first to segment thick vessels through the new optimized top-hat, homomorphic filtering, and median filter. Then, the second configuration is used to segment thin vessels using the proposed optimized top-hat, homomorphic filtering, matched filter, and segmentation using the MCET-HHO multilevel algorithm. Finally, morphological image operations are carried out in the post-processing stage. RESULTS: The proposed approach was assessed by using two publicly available databases (DRIVE and STARE) through three performance metrics: specificity, sensitivity, and accuracy. Analyzing the obtained results, an average of 0.9860, 0.7578 and 0.9667 were respectively achieved for DRIVE dataset and 0.9836, 0.7474 and 0.9580 for STARE dataset. CONCLUSIONS: The numerical results obtained by the proposed technique, achieve competitive average values with the up-to-date techniques. The proposed approach outperform all leading unsupervised methods discussed in terms of specificity and accuracy. In addition, it outperforms most of the state-of-the-art supervised methods without the computational cost associated with these algorithms. Detailed visual analysis has shown that a more precise segmentation of thin vessels was possible with the proposed approach when compared with other procedures.


Assuntos
Algoritmos , Vasos Retinianos , Bases de Dados Factuais , Fundo de Olho , Processamento de Imagem Assistida por Computador , Vasos Retinianos/diagnóstico por imagem
13.
Biomed Opt Express ; 12(12): 7849-7871, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35003871

RESUMO

Several specialized retinal optical coherence tomography (OCT) acquisition and processing methods have been recently developed to allow in vivo probing of light-evoked photoreceptors function, focusing on measurements in individual photoreceptors (rods and cones). Recent OCT investigations in humans and experimental animals have shown that the outer segments in dark-adapted rods and cones elongate in response to the visible optical stimuli that bleach fractions of their visual photopigment. We have previously successfully contributed to these developments by implementing OCT intensity-based "optoretinograms" (ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting changes in the phases of back-scattered light. This allowed more sensitive observations of tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize photoreceptor mosaic, allowing phase measurements of path length changes in outer segments of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is much more demanding to implement and has not been explored extensively. This manuscript describes our efforts to implement a phase analysis framework to retinal images acquired with a standard resolution and raster scanning OCT system, which offers much lower phase stability than line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our initial results showcase the successful extraction of phase-based ORG signal from the B-scans acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted from the same data sets. We implemented the calculation of phase-based ORG signals using Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly ORG probing.

14.
Biomed Opt Express ; 11(10): 5995-6011, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33150001

RESUMO

A retinal imaging system was designed for full-field (FF) swept-source (SS) optical coherence tomography (OCT) with cellular resolution. The system incorporates a real-time adaptive optics (AO) subsystem and a very high-speed CMOS sensor, and is capable of acquiring volumetric images of the retina at rates up to 1 kHz. While digital aberration correction (DAC) is an attractive potential alternative to AO, it has not yet been shown to provide resolution allowing visualization of cones in the fovea, where early detection of functional deficits is most critical. Here we demonstrate that FF-SS-OCT with hardware AO permits resolution of foveal cones, imaged at eccentricities of 1° and 2°, with volume rates adequate to measure light-evoked changes in photoreceptors. With the reference arm blocked, the system can operate as a kilohertz AO flood illumination fundus camera with adjustable temporal coherence and is expected to allow measurement of light-evoked changes caused by common path interference in photoreceptor outer segments (OS). In this paper, we describe the system's optical design, characterize its performance, and demonstrate its ability to produce images of the human photoreceptor mosaic.

15.
Opt Lett ; 45(21): 5945-5948, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137037

RESUMO

Here we provide a counter-example to the conventional wisdom in biomedical optics that longer wavelengths aid deeper imaging in tissue. Specifically, we investigate visible light optical coherence tomography of Bruch's membrane (BM) in the non-pathologic eyes of humans and two mouse strains. Surprisingly, we find that shorter visible wavelengths improve the visualization of BM in pigmented eyes, where it is located behind a highly scattering layer of melanosomes in the retinal pigment epithelium (RPE). Monte Carlo simulations of radiative transport suggest that, while absorption and scattering are higher at shorter wavelengths, detected multiply scattered light from the RPE is preferentially attenuated relative to detected backscattered light from the BM.


Assuntos
Luz , Epitélio Pigmentado da Retina/diagnóstico por imagem , Espalhamento de Radiação , Tomografia de Coerência Óptica/métodos , Animais , Lâmina Basilar da Corioide/diagnóstico por imagem , Humanos , Melanossomas/metabolismo , Camundongos , Método de Monte Carlo , Epitélio Pigmentado da Retina/citologia , Razão Sinal-Ruído
16.
Invest Ophthalmol Vis Sci ; 61(13): 1, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137194

RESUMO

Purpose: To investigate the major organelles of the retinal pigment epithelium (RPE) in wild-type (WT, control) mice and their changes in pigmented Abca4 knockout (Abca4-/-) mice with in situ morphologic, spatial, and spectral characterization of live ex vivo flat-mounted RPE using multicolor confocal fluorescence microscopy (MCFM). Methods: In situ imaging of RPE flat-mounts of agouti Abca4-/- (129S4), agouti WT (129S1/SvlmJ) controls, and B6 albino mice (C57BL/6J-Tyrc-Brd) was performed with a Nikon A1 confocal microscope. High-resolution confocal image z-stacks of the RPE cell mosaic were acquired with four different excitation wavelengths (405 nm, 488 nm, 561 nm, and 640 nm). The autofluorescence images of RPE, including voxel-by-voxel emission spectra, were acquired and processed with Nikon NIS-AR Elements software. Results: The 3-dimensional multicolor confocal images provided a detailed visualization of the RPE cell mosaic, including its melanosomes and lipofuscin granules, and their varying characteristics in the different mice strains. The autofluorescence spectra, spatial distribution, and morphologic features of melanosomes and lipofuscin granules were measured. Increased numbers of lipofuscin and reduced numbers of melanosomes were observed in the RPE of Abca4-/- mice relative to controls. Conclusions: A detailed assessment of the RPE autofluorescent granules and their changes ex vivo was possible with MCFM. For all excitation wavelengths, autofluorescence from the RPE cells was predominantly contributed by lipofuscin granules, while melanosomes were found to be essentially nonfluorescent. The red shift of the emission peak confirmed the presence of multiple chromophores within lipofuscin granules. The elevated autofluorescence levels in Abca4-/- mice correlated well with the increased number of lipofuscin granules.


Assuntos
Lipofuscina/metabolismo , Melanossomas/metabolismo , Organelas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Imageamento Tridimensional , Lipofuscina/química , Melanossomas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Epitélio Pigmentado da Retina/diagnóstico por imagem
17.
Opt Lett ; 45(17): 4658-4661, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870829

RESUMO

Noninvasive, objective measurement of rod function is as significant as that of cone function, and for retinal diseases such as retinitis pigmentosa and age-related macular degeneration, rod function may be a more sensitive biomarker of disease progression and efficacy of treatment than cone function. Functional imaging of single human rod photoreceptors, however, has proven difficult because their small size and rapid functional response pose challenges for the resolution and speed of the imaging system. Here, we describe light-evoked, functional responses of human rods and cones, measured noninvasively using a synchronized adaptive optics optical coherence tomography (OCT) and scanning light ophthalmoscopy (SLO) system. The higher lateral resolution of the SLO images made it possible to confirm the identity of rods in the corresponding OCT volumes.


Assuntos
Luz , Oftalmoscopia/métodos , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Humanos
18.
Proc Natl Acad Sci U S A ; 117(35): 21690-21700, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817515

RESUMO

The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Nervo Óptico/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Retina/metabolismo , Fatores de Transcrição/metabolismo
19.
Invest Ophthalmol Vis Sci ; 61(3): 9, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176260

RESUMO

Purpose: To investigate diurnal variation in the length of mouse rod outer segments in vivo. Methods: The lengths of rod inner and outer segments (RIS, ROS) of dark-adapted albino mice maintained on a 12-hour dark:12-hour light cycle with light onset 7 AM were measured at prescribed times (6:30 AM, 11 AM, 3:30 PM) during the diurnal cycle with optical coherence tomography (OCT), taking advantage of increased visibility, after a brief bleaching exposure, of the bands corresponding to RIS/ROS boundaries and ROS tips (ROST). Results: Deconvolution of OCT depth profiles resolved two backscatter bands located 7.4 ± 0.1 and 10.8 ± 0.2 µm (mean ± SEM) proximal to Bruch's membrane (BrM). These bands were identified with histology as arising from the apical surface of RPE and ROST, respectively. The average length of dark-adapted ROS at 6:30 AM was 17.7 ± 0.8 µm. By 11 AM, the average ROS length had decreased by 10% to 15.9 ± 0.7 µm. After 11 AM, the ROS length increased steadily at an average rate of 0.12 µm/h, returning to baseline length by 23.5 hours in the cycle. Conclusions: The diurnal variation in ROS length measured in these experiments is consistent with prior histological investigations showing that rodent rod discs are phagocytosed by the RPE maximally over several hours around the time of normal light onset. The rate of recovery of ROS to baseline length before normal light onset is consistent with the hypothesis that disc membrane synthesis is fairly constant over the diurnal cycle.


Assuntos
Ritmo Circadiano/fisiologia , Segmento Externo da Célula Bastonete/fisiologia , Albinismo Ocular/patologia , Animais , Lâmina Basilar da Corioide/ultraestrutura , Adaptação à Escuridão/fisiologia , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fagocitose/fisiologia , Retina/anatomia & histologia , Retina/diagnóstico por imagem , Segmento Interno das Células Fotorreceptoras da Retina/fisiologia , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo da Célula Bastonete/ultraestrutura , Espalhamento de Radiação , Tomografia de Coerência Óptica/métodos
20.
Adv Mater ; 32(14): e1903759, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078198

RESUMO

The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.


Assuntos
Antineoplásicos/química , Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Ácidos Borônicos/química , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Carbocianinas/química , Linhagem Celular Tumoral , Dissacarídeos/química , Gadolínio DTPA/química , Glioma/tratamento farmacológico , Glioma/mortalidade , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Transcitose , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...